Sharp Recovery Bounds for Convex Demixing, with Applications

نویسندگان

  • Michael B. McCoy
  • Joel A. Tropp
چکیده

Demixing refers to the challenge of identifying two structured signals given only the sum of the two signals and prior information about their structures. Examples include the problem of separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis, and the problem of decomposing an observed matrix into a low-rank matrix plus a sparse matrix. This paper describes and analyzes a framework, based on convex optimization, for solving these demixing problems, and many others. This work introduces a randomized signal model which ensures that the two structures are incoherent, i.e., generically oriented. For an observation from this model, this approach identifies a summary statistic that reflects the complexity of a particular signal. The difficulty of separating two structured, incoherent signals depends only on the total complexity of the two structures. Some applications include (i) demixing two signals that are sparse in mutually incoherent bases; (ii) decoding spread-spectrum transmissions in the presence of impulsive errors; and (iii) removing sparse corruptions from a low-rank matrix. In each case, the theoretical analysis of the convex demixing method closely matches its empirical behavior. Communicated by Emmanuel Candès.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The achievable performance of convex demixing

Demixing is the problem of identifying multiple structured signals from a superimposed, undersampled, and noisy observation. This work analyzes a general framework, based on convex optimization, for solving demixing problems. When the constituent signals follow a generic incoherence model, this analysis leads to precise recovery guarantees. These results admit an attractive interpretation: each...

متن کامل

Regularized Gradient Descent: A Nonconvex Recipe for Fast Joint Blind Deconvolution and Demixing

We study the question of extracting a sequence of functions {fi, gi}i=1 from observing only the sum of their convolutions, i.e., from y = ∑s i=1 fi ∗ gi. While convex optimization techniques are able to solve this joint blind deconvolution-demixing problem provably and robustly under certain conditions, for medium-size or large-size problems we need computationally faster methods without sacrif...

متن کامل

THE ACHIEVABLE PERFORMANCE OF CONVEX DEMIXING MICHAEL B. MCCOY AND JOEL A. TROPP The achievable performance of convex demixing

Demixing is the problem of identifying multiple structured signals from a superimposed, undersampled, and noisy observation. This work analyzes a general framework, based on convex optimization, for solving demixing problems. When the constituent signals follow a generic incoherence model, this analysis leads to precise recovery guarantees. These results admit an attractive interpretation: each...

متن کامل

Initial coefficients of starlike functions with real coefficients

The sharp bounds for the third and fourth coefficients of Ma-Minda starlike functions having fixed second coefficient are determined. These results are proved by using certain constraint coefficient problem for functions with positive real part whose coefficients are real and the first coefficient is kept fixed. Analogous results are obtained for a general class of close-to-convex functions

متن کامل

A Sharp Sufficient Condition for Sparsity Pattern Recovery

Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014